
Avoiding The Top 10
Software Security Design Flaws

Summary of Report

Boston .NET Architecture Group

Robert Hurlbut

Presented 9/17/2014

This summary is distributed under a Common Commons BY-SA License

(http://creativecommons.org/licenses/by-sa/3.0/legalcode)

Notes on Summary

• This is a summary of the report “Avoiding The
Top 10 Software Security Design Flaws”.

• The slides, headings, and bullet points in this
summary primarily come directly from the
report as reviewed by the presenter.

• This summary is not endorsed by or affiliated
in any way with the IEEE Computer Society or
the Center for Secure Design (CSD).

Center for Secure Design (CSD)

• The IEEE Computer Society created the Center for
Secure Design (CSD) with a foundational workshop in
April, 2014

• The purpose of the workshop was to bring together
software security experts who are real practitioners
from industry, academia and government to address
the problem of secure design.

• Participants in the CSD foundational workshop
included experts from major corporations such as RSA,
EMC, HP, Google, Twitter, and Intel, along with key
academics in the field.

The CSD Mission

• The IEEE Computer Society's CSD will gather
software security expertise from industry,
academia and government. The CSD provides
guidance on:
– Recognizing software system designs that are likely

vulnerable to compromise.

– Designing and building software systems with strong,
identifiable security properties.

• The CSD is part of the IEEE Computer Society's
larger cybersecurity initiative, launched in 2014.

Report

http://cybersecurity.ieee.org/images/files/images/pdf/CybersecurityInitiative-
online.pdf

http://cybersecurity.ieee.org/images/files/images/pdf/CybersecurityInitiative-online.pdf
http://cybersecurity.ieee.org/images/files/images/pdf/CybersecurityInitiative-online.pdf
http://cybersecurity.ieee.org/images/files/images/pdf/CybersecurityInitiative-online.pdf

Bugs vs Flaws

• While a system may always have implementation
defects or “bugs,” we have found that the security of
many systems is breached due to design flaws or
“flaws.”

• We believe that if organizations design secure systems,
which avoid such flaws, they can significantly reduce
the number and impact of security breaches.

• A bug is an implementation-level software problem.

• A flaw, by contrast, is a problem at a deeper level … it is
the result of a mistake or oversight at the design level.

Secure Design Flaws

1. Incorrect trust assumptions
2. Broken authentication mechanisms that can be bypassed or tampered

with
3. Neglecting to authorize after authentication
4. Lack of strict separation between data and control instructions, and as a

result processing control instructions received from an untrusted source
5. Not explicitly validating all data
6. Misuse of cryptography
7. Failure to identify sensitive data and how they should be handled
8. Failure to consider the users
9. Misunderstanding how integrating external components change an

attack surface
10. Brittleness in the face of future changes made to objects and actors

Secure Design Recommendations

1. Earn or give, but never assume, trust
2. Use an authentication mechanism that cannot be bypassed or

tampered with
3. Authorize after you authenticate
4. Strictly separate data and control instructions, and never process

control instructions received from untrusted sources
5. Define an approach that ensures all data are explicitly validated
6. Use cryptography correctly
7. Identify sensitive data and how they should be handled
8. Always consider the users
9. Understand how integrating external components changes your

attack surface
10. Be flexible when considering future changes to objects and actors

1. Earn or give, but never assume,
trust

• Confirm sensitive material really does need to
be stored on the client.

• If IP or sensitive material must be stored or
sent to the client, the system should be
designed to cope with potential compromise.

• Make sure all data received from an untrusted
client are properly validated before
proceeding (more on this later).

2. Use an authentication mechanism
that cannot be bypassed or tampered

with
• Use of authentication techniques that don’t fall into

the category of something you know (i.e. password),
something you are (i.e. biometric), or something you
have (i.e. smartphone) may allow users to access a
system or service they shouldn’t.

• A single authentication mechanism leverage one or
more factors as per an application’s requirements –
serves as a logical “choke point”.

• Authentication credentials have limited lifetimes, be
unforgeable, and be stored so that if stolen they can
not be used by the thief to pose as legitimate users.

3. Authorize after you authenticate

• Always follow this order. Don’t assume
authorization automatically after
authentication.

• Use a common infrastructure (e.g. system
library or back end) to authorize users.

4. Strictly separate data and control
instructions, and never process control
instructions received from untrusted

sources
• Consider control-flow integrity and segregation of

control and potentially untrusted data as
important design goals.

• A design that relies on ability to transform data
into code should be careful of:
– Eval functions
– Query languages
– Exposed reflection

5. Define an approach that ensures all
data are explicitly validated

• Design or use centralized validation mechanism.

• Transform data into canonical form.

• Use common libraries of validation primitives.

• Input validation requirements are often state-
dependent.

• Explicitly re-validate assumptions “nearby” code
that relies on them.

• Use implementation-language-level types to
capture assumptions about data validity.

6. Use cryptography correctly

• Avoid common pitfalls of using cryptography:
– Rolling your own cryptographic algorithms or

implementations

– Misuse of libraries and algorithms

– Poor key management

– Randomness that is not random

– Failure to centralize cryptography

– Failure to allow for algorithm adaptation and
evolution

• Make use of proven algorithms and libraries

7. Identify sensitive data and how they
should be handled

• Identify sensitive data and determine how to
protect it appropriately.

• Data sensitivity is context-sensitive dependent
on regulation, company policy, contractual
obligations, and user expectation.

• Identify trust boundaries for when data sets
transit between systems and implement
proper data protection policies.

8. Always consider the users

• Create designs that facilitate secure
configuration and use by those interested in
doing so.

• Use designs that motivate and incentivize
secure use among those not particularly
interested in software security.

• Use designs that prevent or mitigate abuse
from those who intend to weaken or
compromise the system.

9. Understand how integrating
external components changes your

attack surface
• It is a common adage of software security that

whenever possible, functionality should be achieved by
the reuse of tried-and-true pieces of previously tested
and validated software, instead of developing from
scratch every time.

• Isolate external components as much as your required
functionality permits; use containers, sandboxes, and
drop privileges before entering uncontrolled code.

• Document everything.

• Design for flexibility.

10. Be flexible when considering future
changes to objects and actors

• Software security must be designed for change, rather
than being fragile, brittle, and static.

• Design for secure updates.
• Design for security properties changing over time; for

example, when code is updated.
• Design with the ability to isolate or toggle functionality.
• Design for changes to objects intended to be kept

secret.
• Design for changes in the security properties of

components beyond your control.
• Design for changes to entitlements.

Get Involved

• As stated in the mission statement, the IEEE Computer
Society Center for Secure Design will provide guidance on:
– Recognizing software system designs that are likely vulnerable

to compromise.
– Designing and building software systems with strong,

identifiable security properties.
• This document is just one of the practical artifacts that the Center for

Secure Design will deliver.

• Interested in keeping up with Center for Secure Design
activities? Follow @ieeecsd on Twitter, catch up with us via
cybersecurity.ieee.org, or contact Kathy Clark-Fisher,
Manager, New Initiative Development (kclark-
fisher@computer.org).

Resources

• http://cybersecurity.ieee.org/

• http://searchsecurity.techtarget.com/opinion/
McGraw-on-the-IEEE-Center-for-Secure-
Design

http://searchsecurity.techtarget.com/opinion/McGraw-on-the-IEEE-Center-for-Secure-Design
http://searchsecurity.techtarget.com/opinion/McGraw-on-the-IEEE-Center-for-Secure-Design
http://searchsecurity.techtarget.com/opinion/McGraw-on-the-IEEE-Center-for-Secure-Design
http://searchsecurity.techtarget.com/opinion/McGraw-on-the-IEEE-Center-for-Secure-Design
http://searchsecurity.techtarget.com/opinion/McGraw-on-the-IEEE-Center-for-Secure-Design
http://searchsecurity.techtarget.com/opinion/McGraw-on-the-IEEE-Center-for-Secure-Design
http://searchsecurity.techtarget.com/opinion/McGraw-on-the-IEEE-Center-for-Secure-Design
http://searchsecurity.techtarget.com/opinion/McGraw-on-the-IEEE-Center-for-Secure-Design
http://searchsecurity.techtarget.com/opinion/McGraw-on-the-IEEE-Center-for-Secure-Design
http://searchsecurity.techtarget.com/opinion/McGraw-on-the-IEEE-Center-for-Secure-Design
http://searchsecurity.techtarget.com/opinion/McGraw-on-the-IEEE-Center-for-Secure-Design
http://searchsecurity.techtarget.com/opinion/McGraw-on-the-IEEE-Center-for-Secure-Design
http://searchsecurity.techtarget.com/opinion/McGraw-on-the-IEEE-Center-for-Secure-Design
http://searchsecurity.techtarget.com/opinion/McGraw-on-the-IEEE-Center-for-Secure-Design
http://searchsecurity.techtarget.com/opinion/McGraw-on-the-IEEE-Center-for-Secure-Design
http://searchsecurity.techtarget.com/opinion/McGraw-on-the-IEEE-Center-for-Secure-Design
http://searchsecurity.techtarget.com/opinion/McGraw-on-the-IEEE-Center-for-Secure-Design
http://searchsecurity.techtarget.com/opinion/McGraw-on-the-IEEE-Center-for-Secure-Design
http://searchsecurity.techtarget.com/opinion/McGraw-on-the-IEEE-Center-for-Secure-Design
http://searchsecurity.techtarget.com/opinion/McGraw-on-the-IEEE-Center-for-Secure-Design

