
 Test Cases 

 Page 1 of 5 

Programming Test Cases see https://en.wikipedia.org/wiki/Test_case  

Why test cases? Because we need to ensure these: 
https://en.wikipedia.org/wiki/Defensive_design  
https://en.wikipedia.org/wiki/Defensive_programming  

When testing a program, especially your own program, beware of confirmation bias. We like evidence 
proving we are right. No one likes being wrong, no one wants to shoot themselves in the foot. The 
scientific method operates more along the lines of Dijkstra’s bug warning: there is no exhaustive test 
that proves a theory is correct. If scientists fail to prove themselves wrong, they are conditionally 
satisfied they might be right…until further testing proves otherwise. This is the attitude of a good 
tester, and of one of the great pioneers in computer science who was not also a woman. 

Test cases illustrate steps to exercise all lines of code in a program. They include specific data to be 
input, the rational for entering it, and the expected output. Each test case step results in PASS or FAIL. 
In the latter case, unexpected output, the lack thereof, or system error messages must be captured 
and recorded. Test cases must be specific enough to be repeatable by the programmer who receives 
the testing results. 

Positive test cases are done with a representative range (lowest, middle, highest) of valid input values 
to generate expected output demonstrating all functions of the software. The range of input includes 
typically expected values and edge case values (minimum, maximum, zero, null, empty, full). The test 
case documents the expected result so the tester can verify a Pass condition. If a positive test case 
fails and the input data is within the min/max range, then it indicates a bug. If the input data was 
outside the min/max range, then it is really a Negative test case. 

Multiple tests must be done in a single session to show repeatability of passed test. A single test may 
be successful, but subsequent tests may reveal problems in the program’s logic or housekeeping of 
internal variables. E.g. the first search for a value within a string may pass the test but if the program 
were to erroneously begin its search for another input at the last found position of a previous search 
instead of the string’s beginning, a FAIL condition would be identified only with a second test – add 
comments describing how the bug could be recreated. 

Negative test cases employ input values which do not illustrate the program’s intended purpose and 
function. Negative test cases are used to explore beyond the boundaries of positive test case input: 
over-the-edge case values which are less than the minimum or greater than the maximum edges. 
Output of validation messages in response to incorrect or unexpected inputs is expected and thus will 
PASS a negative test case.  

Any input generating incorrect output, unexpected program behaviour, or a system error is identified 
as a FAILed test case. These conditions are documented when test cases are run, and later used to 
initiate programming maintenance. Validation of user input should be done before the program or OS 
throws an exception/error – these are usually found just outside the edge cases. 

• Negative test cases illustrate all the ways inputs outside the Positive edge cases can either 
generate validation and diagnostic messages (Pass), or cause run-time errors (Fail).  

o Test case Comments identify what validation logic and diagnostic message is required 
to avoid errors caused by certain inputs.  

▪ No programming is required in source files or in the comments.  

https://en.wikipedia.org/wiki/Test_case
https://en.wikipedia.org/wiki/Defensive_design
https://en.wikipedia.org/wiki/Defensive_programming
https://en.wikipedia.org/wiki/Confirmation_bias
https://en.wikipedia.org/wiki/Edge_case


 Test Cases 

 Page 2 of 5 

▪ In a professional development environment, analysts develop, run, and 
document test cases. The results are sent to the programmer (sometimes 
offshore in a different time zone) who wrote the code. That programmer 
rectifies the issues, reruns the tests, and returns the results (often overnight) to 
the analyst. 

 

Individual test case components 

Description: 

• The reason and intent of each test; this is like the rational for source code comments. 

Positive or Negative Test and its Purpose: 

• "+" indicates a positive case for inputs in normal range of use or to illustrate the minimum & 
maximum values that can be processed successfully, i.e. up to the edge cases. All such cases 
are expected to PASS. 

• "−" indicates a negative case using inputs outside the normal range of use. These are expected 
to generate a validation message or error handling and thus PASS the test. If those inputs 
result in unexpected / undefined behaviours, the test case FAILs. 

• Always state the intended purpose of the input. What is it meant to verify? 

Data Input: 

• exact value or instructions to create input that illustrates Description and Purpose.  

• It specifies exactly what and how data will be input but not why. Why is in the Description. 

Expected Output: 

• reference value to confirm the test result – this is documented before the test is run. 

Actual result if unexpected: 

• any variance from the expected output 

Success? 

• "PASS" or "FAIL" 

Comments: 

• required for a test case that FAILs and/or for unexpected results. 

• If the test fails, recommend a fix to prevent the failure, e.g. a validation check and/or 
diagnostic message. 

• If the test passes, comments are needed only to clarify assumptions, constraints, or special 
conditions required for the input to result in the expected output. 



 Test Cases 

 Page 3 of 5 

Useful test string of unique characters 

         1         2         3         4         5         6         7         8 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!@#$%^&*()_+-=[]\{}|<>?/;'": 

 
Test Data 

Although you have seen the code, test cases should use the black box approach in general. That is, not 
to make any assumptions about what the code is expecting or assuming the user will do.  
Because you have seen the code, you may be able to devise tests to cause the program to FAIL: it 
either continues to operate while outputting incorrect values, or it crashes with a terminal error. 

 
When entering a string of test data, what will enable you to verify the “character found” function? 

Type a string: 

➢ 0123456789 

Type the character position within the string: // to be retrieved 

➢ 4 

The character found at 4 position is ‘4’ 

Is that a meaningful test result? Can you verify the result is from the string or does it reveal a bug 
which shows the position index instead of the value at that position within the string? Is the input 
prompt from a human POV, what is in the fourth position? (3) Is the program interpreting the input as 
its index to the string? (4) 

To reduce confusion, use test data which does not parallel the program’s internals. In the above case, 
use a string of 9876543210 or ABCDEFGHIJ 

N.B. Using repeating characters or repeating sequences for test input can hide problems.  

Enter a string: 

➢ aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa 

Enter the position within the string to be extracted: 

➢ 13 

The character found at 13 position is ‘a’ 

Is that a meaningful test result? Can you verify the result is correct?  

All values entered in a single test should be different.  

For alpha characters, use the Latin alphabet in sequence: abc...xyzABC...XYZ, instead of whatever 
comes out from mashing the keyboard. A sequence of unique alpha / digits helps to illustrate the 
position of data within the variable / string array / structure.  

A suggestion for numbers to be input in the same test case is 123456789, then 234567891, then 
345678912, ... or simply 2, then 3, then 4, … 
E.g. Enter a dividend of 1, a divisor of 1, and the quotient output will appear correctly as 1. If the 
output is the same as the input, any number of bugs could be hiding. Numeric values of -1, 0, 1 

https://www.startpage.com/do/dsearch?query=software+test+cases
https://www.startpage.com/do/dsearch?query=black+box+testing


 Test Cases 

 Page 4 of 5 

represent edge cases. The most careful programmers input only sequences of prime numbers: 3, 5, 7, 
11, 13, 17, 19, 23, 29, … 

https://www.softwaretestinghelp.com/positive-and-negative-test-scenarios/  

C arrays in memory 

A variable's name in C source code is compiled as a pointer to a memory location. The variable's 
data type determines the length of bytes allocated there. (AKA bit width)  E.g. a char is 8 bits or 1 
byte, a short is 16 bits or 2 bytes, a long is 32 bits or 4 bytes. (The OS does not know how your 
program uses the memory or what data type the bits and bytes in that memory location represent. 
Only your program knows this. To the OS, it is just memory allocated to your program.) 

An array name in C is a pointer to the first array element as if it was an ordinary variable. The 
advantage of an array is it can repeat that variable as many times as needed. An array [index] 
selects which one of those variables – called "elements" in an array – will be used. 

char letter1, letter2, letter3, letter4, … becomes unmanageable quickly 
char letters[26]; // declares a group of 26 char data type variables 

The array index [n] is an offset relative to the beginning of the array. 
[0] represents zero offset to the first array element. The array name already points to the first one. 
[1] represents one offset from the first to the second array element.  
[2] is two offsets from the first to the third, and so on to the last element. 

The lower array bound is always index [0]. C will accept an index of [-1]. Despite being negative 
one, it will dutifully go to the offset before the array's beginning location in memory and use whatever 
binary junk it finds there. 

The upper array bound is always index [n−1] where n is the number of elements −1 because array 
indexing always starts at [0]. C will accept an index of [n] and dutifully go to the offset after the 
array's ending location in memory and use whatever binary junk it finds there. 

Because C is efficient, C never wastes CPU cycles checking whether the element is within bounds.  
C trusts that the programmer's logic will never reference an element beyond the array's bounds. 

C char array – assigning values 

char letters[27] = {'a','b','c',...,'x','y','z','\0'}; // alphabet string 
ending with a null-terminator '\0' character where decimal/hex/binary = 0 

char digits[11] = {'0','1','2','3','4','5','6','7','8','9',\0}; 

~~~OS~memory~~~*digits____~~~OS~memory~~~~ 

~~~~~~~~~~~~~~~0123456789\0 ~~~~~~~~~~~~~~~~  '\0' is shown as \0 
          to represent it as a single byte.                

Assign "abcdefghijklmnopqrstuvwxyz\0" to the digits array declared with 11 elements. 

A string assigned to a char array will overwrite memory beginning at &digits[0] to the end of the 
string (not the array) including the null-terminator '\0'. (Some C string functions automatically add 
'\0' to the end.) C trusts the string plus its null-terminator will fit within the array's bounds. If it does 
not, C carries on as if it did anyway. 

https://en.wikipedia.org/wiki/List_of_prime_numbers#The_first_1000_prime_numbers
https://www.softwaretestinghelp.com/positive-and-negative-test-scenarios/


 Test Cases 

 Page 5 of 5 

~~~OS~memory~~~*digits____~~~OS~memory~~~~~~ 

~~~~~~~~~~~~~~~abcdefghijklmnopqrstuvwxyz\0 ~~ 

               ^^^^^^^^^^^ 
               0123456789\0 
 

C char array – retrieving strings 

Because C does not know where \0 is located, it simply searches until it finds \0. Because C array 
elements are offset relative to the beginning of the array, and because C is efficient and trusts the 
programmer, results will be unpredictable if C's assumptions are not true. This is how C finds the end 
of a string in a char array: 

For (i=0; *(charArray + i ) == '\0'; i++)  { printf("%c",charArray[i]; }   
// this may continue beyond the array bounds 
If the OS memory beyond the 11 bytes of  *digits  is not overwritten, the entire alphabet may be 
output. However, the program has no control over what the OS might do with the memory outside 
the bounds of  *digits so results may be unpredictable. 

 

Summary checklist 

• Testing to confirm basic function is just that, basic. And confirms your confirmation bias. 

• MIN and MAX edge cases for each kind of input?  

• Less than MIN? More than MAX? generate validation messages 

• If no tests fail, you may not be trying hard enough.  

• When a test does FAIL, what validation logic and/or diagnostic message to the user is 
recommended to prevent the failure?  

• Integration testing of main() :  run MIN and MAX edge cases selected from each module's 
comprehensive tests. Purpose is to confirm essential functionality of the modules when 
combined into a main() program. Because no source code changes were made to the modules 
when combined into main() program, exhaustive retesting is not required. 

• one worksheet (or file) for each module, one test per row. 

• N.B. you are not testing C library functions, only the modules. 

 

Not quite convinced of the value of test cases? See this for teamwork testing relevant to your project. 

https://white-test.com/for-qa/useful-articles-for-qa/what-is-an-edge-case-in-software-testing/
https://medium.com/inside-league/how-one-code-review-rule-turned-my-team-into-a-dream-team-fdb172799d11

